skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhong, Yafang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Most extant ice caps mantling low-relief Arctic Canada landscapes remained cold based throughout the late Holocene, preserving in situ bryophytes killed as ice expanded across vegetated landscapes. After reaching peak late Holocene dimensions ∼1900 CE, ice caps receded as Arctic summers warmed, exposing entombed vegetation. The calibrated radiocarbon ages of entombed moss collected near ice cap margins (kill dates) define when ice advanced across the site, killing the moss, and remained over the site until the year of their collection. In an earlier study, we reported 94 last millennium radiocarbon dates on in situ dead moss collected at ice cap margins across Baffin Island, Arctic Canada. Tight clustering of those ages indicated an abrupt onset of the Little Ice Age at ∼1240 CE and further expansion at ∼1480 CE coincident with episodes of major explosive volcanism. Here we test the confidence in kill dates as reliable predictors of expanding ice caps by resampling two previously densely sampled ice complexes ∼15 years later after ∼250 m of ice recession. The probability density functions (PDFs) of the more recent series of ages match PDFs of the earlier series but with a larger fraction of early Common Era ages. Post 2005 CE ice recession has exposed relict ice caps that grew during earlier Common Era advances and were preserved beneath later ice cap growth. We compare the 106 kill dates from the two ice complexes with 80 kill dates from 62 other ice caps within 250 km of the two densely sampled ice complexes. The PDFs of kill dates from the 62 other ice caps cluster in the same time windows as those from the two ice complexes alone, with the PDF of all 186 kill dates documenting episodes of widespread ice expansion restricted almost exclusively to 250–450 CE, 850–1000 CE, and a dense early Little Ice Age cluster with peaks at ∼1240 and ∼1480 CE. Ice continued to expand after 1480 CE, reaching maximum dimensions at ∼1880 CE that are still visible as zones of sparse vegetation cover in remotely sensed imagery. Intervals of widespread ice cap expansion coincide with persistent decreases in mean summer surface air temperature for the region in a Community Earth System Model (CESM) fully coupled Common Era simulation, suggesting the primary forcings of the observed snowline lowering were both modest declines in summer insolation and cooling resulting from explosive volcanism, most likely intensified by positive feedbacks from increased snow cover and sea ice and reduced northward heat transport by the oceans. The clusters of ice cap expansion defined by moss kill dates are mirrored in an annually resolved Common Era record of ice cap dimensions in Iceland, suggesting this is a circum-North-Atlantic–Arctic climate signal for the Common Era. During the coldest century of the Common Era, 1780–1880 CE, ice caps mantled >11 000 km2 of north-central Baffin Island, whereas <100 km2 is glaciated at present. The peak Little Ice Age state approached conditions expected during the inception phase of an ice age and was only reversed after 1880 CE by anthropogenic alterations of the planetary energy balance. 
    more » « less
  2. Abstract Recent years have seen growing appreciation that rapidly intensifying flash droughts are significant climate hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of event, which would imply that understanding and forecasting flash droughts might require more than one framework. To do this, we first extend and evaluate a soil moisture volatility–based flash drought definition that we introduced in previous work and use it to inventory the onset dates and severity of flash droughts across the contiguous United States (CONUS) for the period 1979–2018. Using this inventory, we examine meteorological and land surface conditions associated with flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies, and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture flash droughts are indeed a composite of distinct types of rapidly intensifying droughts, and that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenomenological pathways. 
    more » « less
  3. Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid rate of drought intensification and its resultant severity. The FDII framework advances our ability to characterize flash drought because it provides a more complete measure of flash drought intensity than existing classification methods that only consider the rate of intensification. The FDII is computed using two terms measuring the maximum rate of intensification (FD_INT) and average drought severity (DRO_SEV). A climatological analysis using soil moisture data from the Noah land surface model from 1979–2017 revealed large regional and interannual variability in the spatial extent and intensity of soil moisture flash drought across the US. Overall, DRO_SEV is slightly larger over the western and central US where droughts tend to last longer and FD_INT is ~75% larger across the eastern US where soil moisture variability is greater. Comparison of the FD_INT and DRO_SEV terms showed that they are strongly correlated (r = 0.82 to 0.90) at regional scales, which indicates that the subsequent drought severity is closely related to the magnitude of the rapid intensification preceding it. Analysis of the 2012 US flash drought showed that the FDII depiction of severe drought conditions aligned more closely with regions containing poor crop conditions and large yield losses than that captured by the intensification rate component (FD_INT) alone. 
    more » « less